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We present an approach that combines the local-density approximation �LDA� and the dynamical mean-field
theory �DMFT� in the framework of the full-potential linear augmented plane-wave method. Wannier-type
functions for the correlated shell are constructed by projecting local orbitals onto a set of Bloch eigenstates
located within a certain energy window. The screened Coulomb interaction and Hund’s coupling are calculated
from a first-principles constrained random-phase approximation scheme. We apply this LDA+DMFT imple-
mentation, in conjunction with a continuous-time quantum Monte Carlo algorithm, to the study of electronic
correlations in LaFeAsO. Our findings support the physical picture of a metal with intermediate correlations.
The average value of the mass renormalization of the Fe 3d bands is about 1.6, in reasonable agreement with
the picture inferred from photoemission experiments. The discrepancies between different LDA+DMFT cal-
culations �all technically correct� which have been reported in the literature are shown to have two causes: �i�
the specific value of the interaction parameters used in these calculations and �ii� the degree of localization of
the Wannier orbitals chosen to represent the Fe 3d states, to which many-body terms are applied. The latter is
a fundamental issue in the application of many-body calculations, such as DMFT, in a realistic setting. We
provide strong evidence that the DMFT approximation is more accurate and more straightforward to imple-
ment when well-localized orbitals are constructed from a large energy window encompassing Fe-3d, As-4p,
and O-2p and point out several difficulties associated with the use of extended Wannier functions associated
with the low-energy iron bands. Some of these issues have important physical consequences regarding, in
particular, the sensitivity to the Hund’s coupling.
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I. INTRODUCTION

This paper has two purposes. The first one is to present an
implementation of dynamical mean-field theory �DMFT�
within electronic structure calculation methods. This imple-
mentation is based on a highly precise full-potential linear
augmented plane-wave �FLAPW� method, as implemented
in the WIEN2K electronic structure code.1 The second purpose
of this paper is to report on DMFT calculations for the iron
oxypnictide LaFeAsO, the parent compound of the “1111”-
family of recently discovered iron-based superconductors.
The strength of electronic correlations in these materials is
an important issue, which has been a subject of debate in the
literature.2–6

The combination of dynamical mean-field theory with
density-functional theory in the local-density approximation
�LDA+DMFT� provides a powerful framework for the quan-
titative description of electronic correlations in a realistic set-
ting. A number of materials have been investigated in this
framework over the past decade, such as transition metals
and transition-metal oxides, rare-earth and actinide com-
pounds, and organic conductors. These examples testify to
the progress in our understanding of the key physical phe-

nomena associated with the competition between the local-
ized and itinerant characters of electrons belonging to differ-
ent orbitals �see, e.g., Refs. 7–12 for reviews�.

In the past few years, a new generation of LDA+DMFT
implementations have been put forward,13–19 which empha-
size the use of Wannier functions as a natural bridge between
the band-structure and the real-space description of the solid
in terms of orbitals. These functions span the subset of orbit-
als which are treated within the many-body DMFT frame-
work. In this paper, we present an implementation of LDA
+DMFT within the FLAPW framework, using atomic orbit-
als that are promoted to Wannier functions by a truncated
expansion over Bloch functions followed by an orthonormal-
ization procedure. This is a simpler alternative to the previ-
ous implementation of DMFT within FLAPW,14 which con-
structed the Wannier functions following the prescription of
maximal localization.20,21 The choice of FLAPW is moti-
vated by the high level of accuracy of this all-electron, full-
potential method. In the present work, we use the WIEN2K

electronic structure package1 and we have constructed an
interface to it that allows for the construction of Wannier-
type functions used in DMFT. Our implementation is de-
scribed in detail in Sec. II. As a benchmark, we perform
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calculations on a test material, SrVO3, which are presented
in Appendix A and compared to previously published results
for this material.13,17,22–26 Throughout this paper, many-body
effects are treated in the DMFT framework using the recently
developed continuous-time strong-coupling quantum Monte
Carlo algorithm of Werner and co-workers.27,28 Because very
low temperatures can be reached, and very high accuracy can
be obtained at low frequency, this algorithm represents a
major computational advance in the field.

In Sec. III, we address the issue of electronic correlations
in LaFeAsO. The DMFT calculations which have been pub-
lished soon after the experimental discovery of superconduc-
tivity in the iron oxypnictides have provided seemingly con-
tradictory answers to this question. In Refs. 2 and 3, Haule
and Kotliar proposed that LaFeAsO is a strongly correlated
metal, rather close to the Mott metal-insulator transition, and
characterized by a reduced value of the quasiparticle coher-
ence scale, resulting in bad metallic behavior. In contrast, in
Refs. 4–6, Anisimov and co-workers proposed that these ma-
terials are in a weak to intermediate regime of correlations.

Our LDA+DMFT calculations for LaFeAsO support the
physical picture of a metal with intermediate correlations.
The average value of the mass renormalization of the Fe 3d
bands is about 1.6, in reasonable agreement with the picture
inferred from photoemission experiments. We also find that
there is no technical inconsistency between different DMFT
results reported for LaFeAsO before. We show that the dis-
crepancies in the literature are due to two causes: �i� the
specific value of the interaction parameters used in these cal-
culations and �ii� the degree of localization of the Wannier
orbitals chosen to represent the Fe 3d states, to which many-
body terms are applied.

In Sec. III, we perform detailed comparisons between
LDA+DMFT calculations performed with different degree
of localization of the correlated orbitals, associated with dif-
ferent choices of energy windows for the Wannier construc-
tion �and accordingly, different degrees of screening of the
interaction parameters�. We point out several difficulties as-
sociated with the use of more extended Wannier functions
associated with the low-energy iron bands only. Some of
these issues have important physical consequences, in par-
ticular regarding the sensitivity to the Hund’s coupling.

This paper ends with several appendices, reporting on
more detailed aspects or technical issues. Appendix A is de-
voted to a benchmark of our implementation on a “classical”
test compound, SrVO3. Appendix B details some technical
issues associated with the projection scheme used to display
partial spectral functions with a given orbital character. Ap-
pendix C discusses the influence of spin-flip and pair-
hopping terms on the degree of correlations on the basis of
model calculations. We conclude that while these terms are
indeed important close to the Mott transition, they can safely
be neglected in the regime of correlations relevant to
LaFeAsO.

II. THEORETICAL FRAMEWORK

A. Implementation of LDA+DMFT in the APW framework

1. LDA+DMFT in the basis of Bloch waves

To make this paper self-contained and in order to define
the main notations, this subsection begins by briefly review-

ing some essential aspects of the LDA+DMFT framework.
The presentation is close to that of Refs. 14 and 19, where
additional details can be found.

Dynamical mean-field theory is a quantitative method for
handling electron correlations, which can be described as an
“effective atom” approach. The self-energy in the solid is
approximated by that of a local model, a generalized Ander-
son impurity model describing a specific set of atomiclike
orbitals coupled to a self-consistent environment. The self-
consistency requirement is that the local on-site Green’s
function of the solid, calculated using this local self-energy,
must coincide with the Green’s function of the effective im-
purity model.

In order to formulate the local effective atom problem, a
set of �orthonormal� local orbitals ��m

�,��, and corresponding
Wannier-type functions �wkm

�,��, must be constructed. These
Wannier functions span the “correlated” subspace C of the
full Hilbert space, in which many-body correlations �beyond
local-density approximation �LDA�� are taken into account.
This set of orbitals spanning the correlated subspace must be
clearly distinguished from the full basis set of the problem,
in which the Green’s function of the solid can be expressed.
Obviously, the basis set spans a much larger Hilbert space
involving all relevant electronic shells.

Below, we discuss in details how the �wkm
�,�� are con-

structed from the local orbitals ��m
�,��. The index m is an

orbital index within the correlated subset, � denotes the atom
in the unit cell, and � is the spin degree of freedom. Projec-
tions of quantities of interest on the subset C are done using
the projection operator

P̂�,��k� = �
m�C

�wkm
�,���wkm

�,�� . �1�

The effective impurity model is then constructed for the cor-
related subset C. It is defined by the Green’s function of the
effective environment, Gmm�

0,� �i�n�, and Hubbard-Kanamori
interaction parameters Umm�m�m�. By solving this model in a
suitably chosen manner one obtains the impurity Green’s
function Gmm�

�,imp�i�n� as well as the impurity self-energy

�mm�
�,imp�i�n� = „G�,0�i�n�…mm�

−1 − „G�,imp�i�n�…mm�
−1 . �2�

For the formulation of the self-consistency condition relating
the lattice Green’s function of the solid to the impurity
model, it is convenient to choose the Bloch basis ��k�

� � as the
complete basis set of the problem, since it is a natural output
of any electronic structure calculation. The �inverse� Green’s
function of the solid expressed in this basis set is given by

G��k,i�n����
−1 = �i�n + 	 − 
k�

� ����� − ����
� �k,i�n� , �3�

where 
k�
� are the Kohn-Sham �KS� eigenvalues and

����
� �k , i�n� is the approximation to the self-energy obtained

by the solution of the DMFT impurity problem. It is obtained
by “upfolding” the impurity local self-energy as
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����
� �k,i�n� = �

�,mm�

P�m
�,���k���mm�

�,imp�i�n�Pm���
�,� �k� , �4�

where Pm�
�,��k�= �wkm

�,� ��k,�
� � are the matrix elements of the

projection operator, Eq. �1� and

��mm�
�,imp�i�n� = �mm�

�,imp�i�n� − �mm�
dc . �5�

Here, �mm�
�,imp is the impurity self-energy, Eq. �2�, expressed in

the local orbitals, and �mm�
dc is a double-counting correction,

which will be discussed in Sec. II B.
The local Green’s function is obtained by projecting the

lattice Green’s function to the set of correlated orbitals m of
the correlated atom � and summing over the full Brillouin
zone,

Gmm�
�,loc�i�n� = �

k,���

Pm�
�,��k�G���

� �k,i�n�P��m�
�,�� �k� . �6�

Note that the local quantities Gmm�
�,loc�i�n� and ��mm�

�,imp�i�n�
carry also an index �, which we suppressed for better read-
ability.

The self-consistency condition of DMFT imposes that the
local Green’s function, Eq. �6�, must coincide with the one
obtained from the effective impurity problem,

G�,loc�i�n� = G�,imp�i�n� . �7�

This equation implies that the Green’s function of the effec-
tive environment, G0, must be self-consistently related to the
self-energy of the impurity model through

G0
−1 = �imp + Gloc

−1 , �8�

where the dependence of Gloc on �imp is specified by Eqs. �3�
and �6�. In practice, the DMFT equations are solved itera-
tively: starting from an initial G0, the impurity model is
solved for �imp and a new G0 is constructed from Eq. �8�.
The cycle is repeated until convergence is reached.

In order to construct the set of Wannier functions, we start
from a set of local atomiclike orbitals ��m

�,�� defined in the
unit cell. These orbitals can be expanded over the full Bloch
basis set as

��km
�,�� = �

�

��k�
� ��m

�,����k�
� � . �9�

This expansion is then truncated by choosing an energy win-
dow W and restricting the sum to those Bloch states with
Kohn-Sham energies 
k� within W. The number of bands
included in W will in general depend on k and �. We thus
define the modified orbitals �which do not form an orthonor-
mal set because of the truncation�:

��̃km
�,�� = �

��W
��k�

� ��m
�,����k�

� � . �10�

Let us denote the matrix elements of the projection operator
for this subset as

P̃m�
�,��k� = ��̃m

�,���k�
� �, � � W . �11�

The matrix P̃m�
�,��k� is not unitary, except when the sum in

Eq. �10� is carried over all Bloch bands. It is also important

to note that the matrices P̃�,� are in general nonsquare ma-

trices. They reduce to square matrices only in the case when
the number of Kohn-Sham bands contained in the chosen
window equals at every k point the number of correlated
local orbitals to be constructed.

The orbitals ��̃km
�,�� can be orthonormalized giving a set of

Wannier-type functions,

�wkm
�,�� = �

��,m�

Sm,m�
�,�� ��̃km�

��,�� , �12�

where Sm,m�
�,�� = 	O�k ,��−1/2
m,m�

�,�� and Om,m�
�,�� �k ,��= ��̃km

�,� � �̃km�
��,��

the overlap matrix elements.

The overlap Om,m�
�,�� �k ,�� finally reads

Om,m�
�,�� �k,�� = �

W
P̃m�

�,��k�P̃�m�
��,���k� , �13�

while the orthonormalized projectors are then written as

Pm�
�,��k� = �

��m�

	�O�k,���−1/2
m,m�
�,�� P̃m��

��,��k� . �14�

2. Augmented plane waves

In this work, the Bloch basis ��k�
� � are expanded in aug-

mented plane waves �APW/LAPW�, which will be briefly
described in the following. As was first pointed out by
Slater,29 near atomic nuclei the crystalline potential in a solid
is similar to that of a single atom, while in the region be-
tween nuclei �in the interstitial� the potential is rather smooth
and weakly varying. Hence, one may introduce a set of basis
functions, augmented plane waves, adapted to this general
shape of the potential. First the crystal space is divided into
nonoverlapping muffin-tin �MT� spheres centered at the
atomic sites and the interstitial region in between. In the
interstitial region �I� the APW 
G

k �r� is simply the corre-
sponding plane wave for given reciprocal lattice vector G
and crystal momentum k:


G
k �r� =

1
�V

ei�k+G�r, r � I , �15�

where V is the unit cell volume. This plane wave is aug-
mented inside each of the MT spheres by a combination of
the radial solutions of the Schrödinger equation in such a
way that the resulting APW is continuous at the sphere
boundary. The APW are then employed to expand the KS
eigenstates �k�

� �r� for the full KS potential �without any
shape approximation�. In the original formulation of the
APW method the radial solutions expanding a KS eigenstate
inside MT spheres had to be evaluated at the corresponding
eigenenergy leading to an energy-dependent basis set and,
hence, to a nonlinear secular problem. In order to avoid this
complication, linearized versions of the APW method have
been proposed. There are two widely used schemes for the
APW linearization. In the first, the linear APW �LAPW�
method,30 the plane wave is augmented within MT spheres
by a combination of the radial solutions, evaluated at chosen
linearization energies E1l, and their energy derivatives. The
resulting linear augmented plane wave then reads
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G
k �r� = �

1
�V

ei�k+G�r, r � I

�
lm

�Alm
�,k+Gul

�,��r,E1l
� � + Blm

�,k+Gu̇l
�,��r,E1l

� ��Ym
l �r̂� , r � RMT

� ,
 �16�

where the index �=1, . . . ,Nat runs over all N� atomic sites in
the unit cell, the coefficients Alm and Blm are determined
from the requirement for the linear APW to be continuous
and differentiable at the sphere boundary, and r and r̂ are the
radial and angular parts of the position vector, respectively.
The energy-independent basis set �16� leads to a linear secu-
lar problem, however, compared to the energy-dependent
APW, a larger number of the LAPW in the basis set is gen-
erally required to attain the same accuracy. In order to de-
crease the requirement for the number of APW another lin-
earization scheme, APW+lo �Ref. 31� has been proposed.
The APW+lo basis set consists of the augmented plane
waves evaluated at a fixed energy E1l:


G
k �r� = �

1
�V

ei�k+G�r, r � I

�
lm

Alm
�,k+Gul

�,��r,E1l
� �Ym

l �r̂� , r � RMT
� ,
 �17�

where the coefficient Alm is determined from the requirement
for 
G

k �r� to be continuous at the sphere boundary. To in-
crease the variational freedom of the APW+lo basis set the
fixed-energy APW �17� are supplemented for the physically
important orbitals �with l�3� by the local orbitals �lo� that
are not matched to any plane wave in the interstitial and are
defined only within the muffin-tin spheres �r�RMT

� �,


lm,�
lo �r� = �Alm

�,loul
�,��r,E1l

� � + Blm
�,lou̇l

�,��r,E1l
� ��Ym

l �r̂� ,

�18�

with the coefficients Alm and Blm chosen from the require-
ment of zero value and slope for the local orbital at the
sphere boundary.

Additional local orbitals �usually abbreviated with the
capital letters as LO, 
lm,�

LO � can be introduced to account for
semicore states. They have a similar form as Eq. �18� with
the redefined Alm

�,LO and a second term with a coefficient
Clm

�,LO and the radial function evaluated at a corresponding
energy E2l

� for the semicore band. The coefficient Blm is set to
0 in the APW+lo framework.

Generally, in the full-potential augmented plane-wave
method the LAPW, APW+lo, and LO types of orbitals can
be employed simultaneously. The Kohn-Sham eigenstate is
expanded in this mixed basis as

�k�
� �r� = �

i=1

Nb

ci�
i
��r� , �19�

where Nb is the number of the orbitals in the basis set. The
LDA+DMFT framework introduced in the present work can

also be used in conjunction with any mixed APW
+lo /LAPW /LO basis set.

3. Local orbitals and Wannier functions in the APW basis

Having defined the basis set we may now write down the
expression for the Bloch eigenstate expanded in the general
APW basis �19�. For r in the interstitial region, it reads

�k�
� �r� =

1
�V

�
G

NPW

cG
�,��k�ei�k+G�r, �20�

while for the region within the MT spheres r�RMT
� ��

=1, . . . ,Nat�, we have

�k�
� �r� = �

G

NPW

cG
�,��k��

lm

Alm
�,k+Gul

�,��r,E1l
� �Ym

l �r̂�

+ �
nlo=1

Nlo

clo
�,��Alm

�,loul
�,��r,E1l

� � + Blm
�,lou̇l

�,��r,E1l
� ��Ym

l �r̂�

+ �
nLO=1

NLO

cLO
�,��Alm

�,LOul
�,��r,E1l

� �

+ Clm
�,LOul

�,��r,E2l
� ��Ym

l �r̂� , �21�

where NPW is the total number of plane waves considered in
the interstitial which in turn is augmented inside each MT
sphere, Nlo is the number of 
lm,�

lo �r� orbitals of Eq. �18� and
NLO the corresponding number of auxiliary orbitals for semi-
core states 
lm,�

LO �r�.
In the framework of the APW method one has several

choices for the “initial” correlated orbitals ��m
�,��. Any suit-

able combination of the radial solution of the Schrödinger
equation and its energy derivative for a given correlated shell
	� , l
 can be employed, for example, the lo orbital �18�. In
the present paper we simply chose the ��m

�,��’s as the solu-
tions of the Schrödinger equation within the MT sphere
�ul

�,��E1l�Ym
l � at the corresponding linearization energy E1l.

Inserting ��m
�,��= �ul

�,��E1l�Ym
l � and expansion �21� of the

Bloch eigenstate in terms of APWs into Eqs. �10� and �11�,
and making use of the orthonormality of the radial solutions
and their energy derivatives,

�ul
�,��E1l�Ym

l �ul�
�,��E1l�Ym�

l� � = �ll�mm�, �22�

�ul
�,��E1l�Ym

l �u̇l�
�,��E1l�Ym�

l� � = 0, �23�

one obtains the following expression for the projection op-
erator matrix element:
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P̃m�
�,��k� = �ul

�,��E1l�Ym
l ��k�

� � = Alm
�,��k,�� + �

nLO=1

NLO

Clm,LO
�,� �k,�� .

�24�

In this expression, the first term in the right-hand side of Eq.
�24� is due to the contribution from the LAPW and/or
APW+lo orbitals,

Alm
�,��k,�� = �

G

NPW

cG
�,��k�Alm

�,k+G + �
nlo=1

Nlo

clo
�,�Alm

�,lo

+ �
nLO=1

NLO

cLO
�,�Alm

�,LO, �25�

and the contribution due to the LO �semicore� orbitals that
arises due to mutual nonorthogonality of the radial solutions
of the Schrödinger equation for different energies

Clm,LO
�,� �k,�� = cLO

�,�Clm
�,LOÕlm,l�m�

�,� , �26�

where Õlm,l�m�
�,� is the corresponding overlap:

Õlm,l�m�
�,� = �ul

�,��E1l�Ym
l �ul�

�,��El,LO�Ym�
l� � � 0. �27�

Then we orthonormalize the obtained local orbitals to form a
set of Wannier-type functions, Eq. �12�. The corresponding
projection operator matrix elements �24� are orthonormalized
accordingly using Eq. �14�.

B. Implementation and computational methods

1. FLAPW code

For the electronic structure calculation we use the full-
potential APW+lo /LAPW code as implemented in the
WIEN2K package.1 We have built an interface that constructs
the projectors to the correlated orbitals �Pm�

�,��k�� out of the
eigenstates produced by the WIEN2K code, as described in
Sec. II A 3. In order to obtain the local Green’s function, the
summation over momenta, Eq. �6�, is done in the irreducible
Brillouin zone �BZ� only, supplemented by a symmetrization
procedure which is standard in electronic structure calcula-
tions,

�
k

BZ

A�k� = �
s=1

Ns

�
k

IBZ

OsA�k�Os
†, �28�

where A�k� is any k-dependent matrix, Ns the number of
symmetry operations, and Os the symmetrization matrices.
Furthermore, we construct the local orbitals in the local co-
ordinate system of the corresponding atom. This means that
the equivalent atoms in the unit cell for which the DMFT
should be applied, e.g., the two Fe atoms in the oxypnictides,
are exactly the same and the impurity problem has to be
solved only once. Afterward, the Green’s function and self-
energies are put back to the global coordinate system of the
crystal in which the Bloch Green’s function, Eq. �3�, is for-
mulated.

2. Continuous-time quantum Monte Carlo

For the solution of the impurity problem we use the
strong-coupling version of the continuous-time quantum
Monte Carlo �CTQMC� method.27,28 It is based on a hybrid-
ization expansion and has proved to be a very efficient solver
for quantum impurity models in the weak and strong corre-
lation regime. It allows us to address room temperature ��
�1 /kT�40 eV−1� without problems. In our calculations,
we used typically around 5�106 Monte Carlo sweeps and
1000 k points in the irreducible BZ. Since the CTQMC
solver computes the Green’s function on the imaginary-time
axis, an analytic continuation is needed in order to obtain
results on the real-frequency axis. Here, we choose to per-
form a continuation of the impurity self-energy using a sto-
chastic version of the maximum entropy method32 yielding
real and imaginary parts of the retarded self-energy
Re ���+ i0+� , Im ���+ i0+� which can be inserted into Eq.
�3� in order to obtain the lattice spectral function and density
of states.

3. Many-body interactions

The CTQMC strong-coupling algorithm can deal with the
full rotationally invariant form of the interaction
Hamiltonian.28 However, most calculations presented in this
paper will consider only the Ising terms of the Hund’s cou-
pling yielding the interaction Hamiltonian

Hint =
1

2 �
mm�,�

Umm�
�� nm�nm�� +

1

2 �
mm�

Umm�
��̄ �nm↑nm�↓ + nm↓nm�↑� ,

�29�

with Umm�
�� and Umm�

��̄ as the reduced interaction matrices for
equal and opposite spins, respectively. This enables us to
take advantage of a maximal amount of conserved quantum
numbers and, hence, perform the CTQMC calculation with-
out any truncation of the local basis. The effects of spin-flip
and “pair-hopping” terms in the Hund’s interaction are dis-
cussed in Appendix C.

In our approach, the interaction matrices are expressed in
terms of the Slater integrals F0, F2, and F4, where for d
electrons these parameters are related to the Coulomb and
Hund’s coupling via U=F0, J= �F2+F4� /14, and F2 /F4

=0.625.33 Using standard techniques the four-index U matrix
is calculated and the reduced interaction matrices are then
given by Umm�

��̄ =Umm�mm� and Umm�
�� =Umm�mm�−Umm�m�m.

With the above definitions, the Coulomb parameters U and J
are related to the matrices via

U =
1

N2 �
mm�

N

Umm�
��̄ , �30�

J = U −
1

N�N − 1� �
m�m�

N

Umm�
�� . �31�

As mentioned above, the LDA+DMFT scheme �as the
LDA+U one� involves a double-counting correction �mm�

dc in
Eqs. �4� and �5�. Indeed, on-site Coulomb interactions are
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already treated on mean-field level in LDA. Several forms of
the double-counting correction term have been proposed and
investigated.33–35 In this work we follow Ref. 33 and use the
following double-counting correction:

�mm�
�,dc = �mm��U�Nc −

1

2
� − J�Nc

� −
1

2
�� , �32�

where U is the average Coulomb interaction, J is the Hund’s
rule coupling, Nc

� is the spin-resolved occupancy of the cor-
related orbitals, and Nc=Nc

↑+Nc
↓. We compared the results

obtained with Eq. �32� also with the double-counting correc-
tion given in Ref. 36 which gave very similar results.

C. Choice of energy window, localization of Wannier functions,
and screening

The Wannier functions defining the correlated subspace of
orbitals for which a DMFT treatment is performed are con-
structed by truncating the expansion of the initial atomiclike
local orbitals to a restricted energy window W as described
above. The choice of this energy window is an important
issue, which deserves further discussion. Indeed, it will de-
termine the shape and the degree of localization of the re-
sulting Wannier-type functions.

Let us consider first the case of a rather small energy
window containing only those bands that have dominantly an
orbital character which qualifies them as “correlated” �e.g.,
the Fe-3d orbitals in LaFeAsO or the V-3d-t2g orbitals in
SrVO3�. In that case, the dimension of the Kohn-Sham
Hamiltonian used in Eq. �3� coincides with that of the corre-
lated subspace C �i.e., with the number of orbitals involved in
the effective impurity model, for a single correlated atom per
cell�. The Wannier-type functions are then quite extended in
real space and resemble strongly the Wannier orbitals con-
structed within other schemes, such as the maximally local-
ized Wannier construction of Ref. 20 or the Nth order
muffin-tin basis set downfolded to that set of bands.37–39 In
such a situation, hybridization of the correlated orbitals with
states that lie outside the energy window is neglected at the
DMFT level. Some information about the hybridization, e.g.,
of the d states with ligand orbitals is of course taken into
account through the leakage of the Wannier orbitals on
neighboring ligand sites �see, e.g., Ref. 40�.

In contrast, if a larger energy window is chosen, it will in
general contain states treated as correlated as well as states
on which no Hubbard interactions are imposed. In this case,
the dimension of the Kohn-Sham Hamiltonian used in the
LDA+DMFT calculation of the local Green’s functions �3�
and �6� exceeds the number of correlated orbitals involved in
the effective impurity model. The Wannier functions are
more localized in space and the information about the hy-
bridization of the correlated orbitals with other states within
this larger window is carried by the off-diagonal blocks of
the Hamiltonian between correlated and uncorrelated states.

An instructive case occurs when the correlated bands are
well separated from the uncorrelated bands at all k points,
but the bands overlap in energy. This situation is realized for
instance for the t2g bands in SrVO3 that extend into the en-
ergy region of the eg bands. In order to strictly pick the three

correlated t2g bands at each k point, one would in that case
have to introduce a k-dependent energy window. For a
k-independent energy window, one will in general have more
than three bands at some k points corresponding to some eg
contribution in the chosen window. This can then be ex-
pected to result in slightly more localized orbitals. An ex-
ample is given in Appendix A.

D. Local Coulomb interactions, screening, and constrained
RPA calculations

The choice of the energy window influences the value of
the interaction parameters Umm�m�m� in a crucial manner,
which can be traced back to two main reasons. First, the
interaction parameters are related to matrix elements of a
screened interaction between the chosen Wannier functions.
The more bands are included in their construction, the more
localized they become and, hence, the matrix elements in-
crease. Second, screening effects themselves affect the value
of U. The more states are excluded from the screening pro-
cess, the larger U becomes. In what follows we distinguish
carefully between these two effects.

In the present work, we apply the present LDA+DMFT
implementation to one of the new high-Tc superconductors,
LaFeAsO. For constructing the Wannier functions, we focus
on an energy window that contains the ten bands around the
Fermi level with dominantly Fe-3d character and also the
bands coming from the p bands of O and As, which are
mainly located in the energy region �−6,−2� eV, resulting in
a “dpp Hamiltonian.” In addition, we performed calculations
also for a smaller energy window containing only the Fe-3d
bands yielding a “d Hamiltonian,” as well as for a very large
window including around 60 Bloch bands.

The values of the Coulomb interactions U and J are cal-
culated from the constrained random-phase approximation
�cRPA�,41,42 using the recently developed scheme for en-
tangled band structures.43 cRPA calculations for LaFeAsO
have been performed before in Refs. 44 and 45. In Ref. 45
the screened Coulomb parameters are obtained for three dif-
ferent situations: �i� by constructing Wannier functions from
an energy window comprising the Fe-d bands only and
screening calculated excluding the Fe-d channels only, �ii� by
considering a larger window which also includes the As and
O-p states, so that the screening processes, for instance, from
the As-p states to the Fe-d ones are also excluded, �iii� and
finally, a hybrid situation �dubbed “d-dpp” in Ref. 45�, in
which the Wannier functions are calculated from an energy
window including Fe-d, O-p, and As-p, but only the Fe-d
states are excluded from the screening. In other words, the
screening is calculated as in �i� and the Wannier functions as
in �ii�. As discussed in Ref. 45, this third option should be
appropriate in a situation in which a full dpp Hamiltonian is
used but Hubbard interactions are only applied to the d
states.

Here, we follow the same approach as in the d-dpp case
of Ref. 45, but using the new disentanglement scheme of
Ref. 43. First, a partially screened Coulomb interaction Wr is
constructed as follows: Wannier functions for the Fe-d states
are calculated and a basis for the complementary subspace
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�containing in particular the ligands, but also higher lying f
states� is constructed. Based on the interpolating d-band
structure, the Pd polarization is computed and the partially
screened Coulomb interaction Wr is obtained by screening
the bare Coulomb interaction by all RPA screening processes
except Pd. Finally, according to the cRPA procedure the Hub-
bard U matrix is composed of the matrix elements of Wr in
the basis of dpp-Wannier functions. As argued in Ref. 45 this
procedure is suitable for calculations that deal with the full
dpp Hamiltonian in the many-body calculations while ex-
plicitly retaining Coulomb interactions on the d submanifold
only. In particular, we stress that to the extent that our pro-
jection method produces Wannier functions for the dpp win-
dow, the Hubbard U parameters are expressed in the same
basis as the impurity quantities.

It is important to note that we keep the screening channels
in cRPA, i.e., Pd, unchanged when the energy window in our
calculation is varied. Thus, the different energy windows af-
fect only the localization of the Wannier functions, but not
the screening process of the bare Coulomb interaction, and
therefore the effective interactions are increasing with in-
creasing energy window. Keeping the screening channels
fixed is fully consistent with the fact that correlations are
only included for the d electrons but not for the ligand states.

For our purposes, we calculate the average Coulomb in-
teraction U and Hund’s parameter J from the matrices calcu-
lated by cRPA. With this U and J, the interaction matrices in
the spherical symmetric approximation used in our calcula-
tion are obtained as discussed above. As we will discuss in
more detail below, the comparison of the resulting Umm�

�� and

Umm�
��̄ with the cRPA matrices shows that for the dpp Hamil-

tonian, the approximation using atomic values for the ratios
of Slater integrals Fk is well justified, whereas for the d
Hamiltonian the cRPA matrices show strong orbital anisotro-
pies.

III. RESULTS FOR THE IRON OXYPNICTIDE LaFeAsO

A. Construction of the dpp Hamiltonian

Let us start the discussion of correlation effects in
LaFeAsO with our results for the dpp Hamiltonian, for
which Wannier functions are constructed from the energy
window W= �−5.5,2.5� eV. These Wannier functions are
quite well localized. The corresponding Kohn-Sham Hamil-
tonian contains 22 Bloch bands corresponding to the ten
Fe-3d bands, the six As-p bands, and the six O-p bands.

The local many-body interactions corresponding to this
choice of Wannier functions are obtained from cRPA, as de-
scribed in the previous section. They read as

Umm�
�� �cRPA =�

0.00 1.61 1.55 2.26 2.26

1.61 0.00 2.50 1.82 1.82

1.55 2.50 0.00 1.70 1.70

2.26 1.82 1.70 0.00 1.74

2.26 1.82 1.70 1.74 0.00
� ,

Umm�
��̄ �cRPA =�

3.77 2.35 2.21 2.71 2.71

2.35 3.94 2.87 2.44 2.44

2.21 2.87 3.31 2.29 2.29

2.71 2.44 2.29 3.48 2.29

2.71 2.44 2.29 2.29 3.48
� .

The ordering of orbitals in those matrices is dz2, dx2−y2, dxy,
dxz, and dyz.

According to the conventions of the formulae Eqs. �30�
and �31�, these matrices correspond to the values U
=2.69 eV and J=0.79 eV. Using these values of U and J,
we construct the spherically symmetric interaction matrices,

Umm�
�� =�

0.00 1.49 1.49 2.30 2.30

1.49 0.00 2.57 1.76 1.76

1.49 2.57 0.00 1.76 1.76

2.30 1.76 1.76 0.00 1.76

2.30 1.76 1.76 1.76 0.00
� ,

Umm�
��̄ =�

3.59 2.19 2.19 2.73 2.73

2.19 3.59 2.91 2.37 2.37

2.19 2.91 3.59 2.37 2.37

2.73 2.37 2.37 3.59 2.37

2.73 2.37 2.37 2.37 3.59
� .

It is obvious that the approximation of the cRPA matrices by
using spherical symmetrization is well justified in this case,
with the largest absolute deviation being �U�0.35 eV, cor-
responding to a relative error of around 0.09. The reason for
this good agreement is that in the present case the Wannier
functions are already very close to atomiclike orbitals. We
also checked that cRPA yields a significantly larger value of
U for iron-oxide �FeO�, as expected physically.

B. LDA+DMFT results (dpp Hamiltonian)

We carried out LDA+DMFT calculations for the dpp
Hamiltonian using the above matrices at an inverse tempera-
ture �=40 eV−1 �room temperature T=300 K�, using the
experimental crystal structure of LaFeAsO. In Fig. 1 we dis-
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FIG. 1. �Color online� Total DOS for LaOFeAs, dpp Hamil-
tonian. Black line: LDA DOS. Red line: LDA+DMFT DOS.
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play the resulting total densities of states �DOS� together
with the corresponding LDA DOS. The total densities of
states were computed from the lattice Green’s function, Eq.
�3�, traced over all ��W and integrated over BZ. In order to
obtain the corresponding LDA densities of states ����

� �k , i�n�
in Eq. �3� was set to zero.

One sees in Fig. 1 that the LDA+DMFT DOS near the
Fermi level displays characteristic features of a metal in an
intermediate range of correlations. Both occupied and empty
states are shifted toward the Fermi level due to the Fermi-
liquid renormalizations. No high-energy features that would
correspond to lower or upper Hubbard bands are present in
the LDA+DMFT electronic structure. The Fermi-liquid be-
havior is clear from the self-energy on the real-frequency
axis, which we plot in Fig. 2 for the dpp Hamiltonian. Al-
though it shows a quite rich structure as a function of energy,
the real part displays clear linear behavior at low frequency.
The imaginary part is small around �=0 and has a quadratic
frequency dependence at low frequency. It does increase to
rather large values at higher frequencies, however, especially
for occupied states. Hence, our results are in general agree-
ment with the previous calculations of Anisimov et al.4 and
with the experimental photoemission spectra �PES� �Ref. 46�
and x-ray absorption47 spectra of LaFeAsO, which report a
moderately correlated system with mass renormalization
around 1.8–2.0.

In order to analyze the strength of correlations for differ-
ent Fe 3d orbitals we calculated the corresponding quasipar-
ticle residues Zm= 	1−Im�

d�mm���
d� ��→0�
−1 from the self-

energy Eq. �5� on the Matsubara grid �hence, avoiding all
uncertainties related to the analytical continuation�. The val-
ues are 0.609, 0.663, 0.609, and 0.596 for the dz2, dx2−y2, dxy,
and degenerate dxz /dyz orbitals, respectively. In this dpp en-
ergy window the Wannier functions become quite localized
and their spread is expected to be isotropic. Indeed, within
the dpp Hamiltonian the difference in Zm between the orbit-
als is rather small. The resulting value for the average mass
renormalization �between 1.5 and 1.7� is in reasonable agree-
ment with the experimental estimate of 1.8 extracted in Ref.

46 from experimental PES. The smaller mass renormaliza-
tion found in our calculation compared to the experimental
value can be attributed to the single-site approximation of
DMFT. Spatial spin fluctuations, which are completely ne-
glected in this approach, can eventually increase the effective
mass of the quasiparticles.

The partial densities of states for all Fe 3d orbitals com-
puted within the dpp model are displayed in Fig. 3. The
partial LDA+DMFT DOS for the x2−y2 and yz, xz orbitals
are shifted upward relative to the xy. Indeed, we found that
the crystal-field �CF� splitting between the Fe 3d orbitals is
somewhat affected by correlations. The splitting between the
lowest xy and highest z2 orbitals remains unchanged �
�0.3 eV�, while the x2−y2 and yz, xz CF levels are shifted
upward by 0.15 and 0.08 eV relative to their positions in
LDA. In LDA+DMFT they are located at 0.25 and 0.18 eV,
respectively, above the xy orbital.

It is also instructive to look at the momentum-resolved
spectral function A�k ,�� of the crystal. It is obtained from
the lattice Green’s function, Eq. �3�, using the real-frequency
self-energy and tracing over the orbital degrees of freedom.
The result for the dpp model is shown in Fig. 4 for an energy
range including Fe-d, As-p, and O-p states. In agreement
with the Fermi-liquid picture of moderately correlated qua-
siparticles discussed above, one can see well-defined excita-
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tions around the Fermi level, which get more diffuse at
higher binding energies. The bands above the Fermi level are
less affected since the self-energies are quite asymmetric and
smaller for positive frequencies; see Fig. 2. Additionally, it is
easy to see that the As-p states, dominantly in the energy
range �−3.5,−2� eV, hybridize stronger with the Fe-d states
and get, thus, affected by correlations. This effect is almost
absent for the O-p states since they hybridize much less with
Fe-d.

In Fig. 5 we show a comparison between the LDA band
structure and the LDA+DMFT k-resolved electronic struc-
ture in a low-energy range around the Fermi level. This again
reveals the coherent quasiparticles at the Fermi level, as well
as more diffuse bands at higher energies. The crossover be-
tween long-lived quasiparticles and more diffuse states with
a shorter lifetime is around −0.4 eV, in qualitative agree-
ment with existing ARPES data.48 A point to mention here is
the effect of the CF splitting on the band structure. For ex-
ample, a difference between the LDA and DMFT results can
be seen for the excitation with predominantly xy character. In
LDA it forms a hole pocket with an excitation energy of
+0.08 eV at the � point. Due to correlations, however, this
band is shifted down significantly to the Fermi level and the
third hole pocket stemming from the dxy orbital could even-
tually vanish upon electron doping.

One has to keep in mind that a direct comparison to ex-
perimental data is difficult for this compound, since �i� the
experiments were done at low temperatures in the SDW
phase, whereas our calculations are done at room tempera-
ture using the tetragonal crystal structure, and �ii� ARPES
experiments on the 1111 family of pnictide superconductors
are difficult to perform because of difficulties with single-
crystal synthesis. Nevertheless, on a qualitative level, there is
a satisfactory agreement between LDA+DMFT and experi-
ments.

We also studied the dependence of the results on the val-
ues of the interaction parameters U and J. The resulting qua-

siparticle renormalizations Zm are listed in Table I. Compar-
ing the first two rows, one can see that a smaller value of J
decreases the degree of correlations. The third line corre-
sponds to values similar to the ones used in Ref. 4 giving
very similar results. We also increased U to the �unphysi-
cally� large value of U=5.0 eV and the system still displays
metallic behavior, although more correlated. Hence, our cal-
culations strongly suggest that LaFeAsO is not close to a
Mott metal-insulator transition.

In order to check the robustness of our results, we also
investigated the effect of increasing even further the spatial
localization of the Wannier functions corresponding to a very
large energy window W= �−5.5,13.6� eV. We did several
calculations for different parameter sets and the resulting
quasiparticle renormalizations Zm of all these calculations are
listed in Table II. For this case, no cRPA calculations for the
interaction matrices were performed, but it is expected that U
and J will slightly increase with more localized Wannier or-
bitals. In that sense, the first row of Table II corresponds to
interaction parameters that could be realized for these Wan-
nier functions. It is very satisfying to see the calculations
gave almost identical quasiparticle renormalizations. Also
the dependence on U and J is very similar to the one we
found for the dpp Hamiltonian. In that sense we consider our
calculations to be converged in terms of the number of Bloch
bands that are included for the construction of the Wannier
functions and the local Hamiltonian.

C. Remarks on calculations using the d Hamiltonian and
extended Wannier functions

In this section, we address the LDA+DMFT calculations
performed with the so-called d Hamiltonian, where only the
ten Fe-d bands around the Fermi level are used for the con-
struction of the Wannier orbitals. In doing so, we shall shed
light on the discussion which has appeared in the literature2–6
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TABLE I. Quasiparticle weights for different interaction param-
eters with Wannier orbitals constructed from W= �−5.5,2.5� eV
�dpp Hamiltonian�. The values in boldface correspond to the inter-
action parameters obtained from cRPA.

Interactions z2 x2−y2 xy yz, zx

U=2 .69, J=0 .79 0.61 0.66 0.61 0.60

U=2.69, J=0.60 0.72 0.76 0.73 0.71

U=3.70, J=0.80 0.52 0.57 0.53 0.52

U=5.00, J=0.80 0.41 0.45 0.43 0.42

TABLE II. Quasiparticle weights for different interaction pa-
rameters with the Wannier orbitals constructed for a very large win-
dow W= �−5.5,13.6� eV.

Interactions z2 x2−y2 xy yz, zx

U=3.00, J=0.80 0.62 0.66 0.58 0.58

U=3.00, J=0.60 0.74 0.77 0.72 0.72

U=3.70, J=0.80 0.58 0.61 0.52 0.56
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regarding the results of LDA+DMFT calculations by differ-
ent authors and the degree of correlations of the 1111 family
of pnictide superconductors.

1. Wannier functions and interaction matrices

The first thing to note is that the Wannier functions con-
structed from a small energy window encompassing only the
Fe-d bands are quite extended and very anisotropic, as dis-
cussed in details in Ref. 40. This is directly reflected in the
interaction matrices calculated by cRPA in this restricted en-
ergy window:

Umm�
�� �cRPA =�

0.00 1.41 1.26 1.87 1.87

1.41 0.00 1.91 1.54 1.54

1.26 1.91 0.00 1.33 1.33

1.87 1.54 1.33 0.00 1.44

1.87 1.54 1.33 1.44 0.00
� ,

Umm�
��̄ �cRPA =�

3.17 2.02 1.72 2.22 2.22

2.02 3.36 2.16 2.04 2.04

1.72 2.16 2.17 1.73 1.73

2.22 2.04 1.73 2.73 1.84

2.22 2.04 1.73 1.84 2.73
� ,

which display a strong orbital dependence. For instance, the
intraorbital �Hubbard� interaction spans from 2.17 to 3.36
eV. The interaction matrices in the spherical symmetric ap-
proximation using the averages U=2.14 and J=0.59 are

Umm�
�� =�

0.00 1.25 1.25 1.85 1.85

1.25 0.00 2.06 1.45 1.45

1.25 2.06 0.00 1.45 1.45

1.85 1.45 1.45 0.00 1.45

1.85 1.45 1.45 1.45 0.00
� ,

Umm�
��̄ =�

2.82 1.77 1.77 2.18 2.18

1.77 2.82 2.31 1.91 1.91

1.77 2.31 2.82 1.91 1.91

2.18 1.91 1.91 2.82 1.91

2.18 1.91 1.91 1.91 2.82
� .

The largest deviation in this case is �U=0.65 eV corre-
sponding to a relative error of about 0.26. This shows clearly
that the spherical approximation is highly questionable when
using only the d bands for the Wannier construction. Of
course, the full anisotropic interaction matrices can in prin-
ciple be used in the LDA+DMFT calculation, but this raises
the very delicate issue of a reliable orbital-dependent
double-counting correction.

Another consequence of using delocalized Wannier func-
tions is that they lead to significant nonlocal interactions Vdd,
which we found to be �from cRPA� of order 0.23U to 0.32U.
These interactions are completely neglected in the single-site
local DMFT approach suggesting the need for a cluster ex-
tension in that case. For these various reasons, we have res-

ervations against using a d-only Hamiltonian with extended
Wannier functions for DMFT calculations on LaFeAsO, as
also previously emphasized in Ref. 40.

2. Consistency with previous calculations

Nevertheless, in order to clarify apparent discrepancies
between previously published LDA+DMFT results,2–6 we
performed calculations within the d Hamiltonian for several
interaction parameters reported in the literature. For the val-
ues U=4.0 eV and J=0.7 eV used in Ref. 2, we do confirm
that the results then display very strong correlations with
quasiparticle renormalizations ranging from Z=0.11 �xy or-
bital� to Z=0.34 �x2−y2 orbital�. One may note that within
the d model there is a substantial orbital dependence of Zm,
with a stronger renormalization predicted for the xy, yz, and
zx orbitals. This is a clear consequence of the Wannier func-
tions being much more delocalized and anisotropic.

The scattering rate at this inverse temperature of �
=40 eV−1 is quite sizable �Im ���+=0��−0.4, . . . ,−0.6,
depending on the orbital� showing that the system is on the
verge of a coherence-incoherence crossover and a bad metal.
The impurity spectral function is plotted in Fig. 6. It re-
sembles very much the one shown in Fig. 3 of Ref. 2 show-
ing clear signatures of lower and upper Hubbard bands.
There are, though, some discrepancies with the total weight
and the positions of the Hubbard bands, but given the differ-
ences in the calculation �underlying electronic structure
method, temperature, interaction vertex which here is only
density-density�, this agreement with Ref. 2 is quite satisfac-
tory.

Furthermore, using the parameters U=0.8 eV and J
=0.5 eV from Ref. 4, we find renormalizations in the range
Z�0.7–0.8. This is somewhat smaller than reported in Ref.
4, although not in drastic disagreement.

Finally, we investigated the dependence on the Hund’s
rule coupling of calculations performed with the d-only
Hamiltonian. Decreasing J to the much lower value J
=0.2 eV but keeping U=4 eV, we find the system to be
much less correlated �Z between 0.63 and 0.73�. We thus
confirm, for those calculations, the great sensitivity to the
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Hund’s coupling reported in Ref. 3. We note, however, that
although reducing J does make the system somewhat less
correlated in this case too, this sensitivity is much weaker
when calculations are performed with the full dpp Hamil-
tonian as reported above.

3. Origin of the sensitivity to the Hund’s coupling: Level
crossings

In order to understand the origin of the remarkable sensi-
tivity of the correlation strength to the value of J observed
with the d Hamiltonian we have studied the evolution of the
ground state of the Fe 3d atomic shell as function of J. We
obtained the 3d level positions corresponding to two differ-
ent choices of the energy window: the “small” one corre-
sponding to the d Hamiltonian and comprising ten Fe 3d
bands and the very large one comprising all As 4p, O 2p,
and Fe 3d bands as well as all unoccupied bands up to 13 eV
above EF. The noninteracting level positions 
mm�

�,� are then
obtained as


mm�
�,� = �

k,��W
Pm�

�,�
k�
� P�m�

�,�� − �̃mm�
�,dc , �33�

where the double-counting term �̃mm�
�,dc is calculated in accor-

dance with Eq. �32� but with the “atomic” occupancy N=6 of
the Fe 3d shell. We used the same values of U=2.14 and
2.69 eV for the “small” and “very large” window choices,
respectively, while the value of J was varied from 0.1 to 0.5
eV. With 
mm�

�,� corresponding to the d Hamiltonian we ob-
served a level crossing at J�0.2 eV with the atomic ground
state changing from the one with spin moment S=1 to the
one with S=2. In the case of the very large window the
ground state always corresponds to S=2 and the splitting
between the ground state and first excited level is constant. It
is obvious that a drastically different behavior of those two
“atomic” models is related to the corresponding level posi-
tions 
mm�, which are computed using different choices for
the Wannier orbitals. The observed change in the Fe 3d
atomic ground state, induced by increasing J, hints on a pos-
sible strong dependence of correlation strength on the
Hund’s rule coupling for LaFeAsO, which is indeed ob-
served in our LDA+DMFT calculations with the d Hamil-
tonian. However, this sensitivity stems from a particular
choice of delocalized and anisotropic Wannier functions and
is much less pronounced when the energy window for the
Wannier function construction is increased.

The bottom line of this investigation is that all previously
published calculations seem to be technically correct. How-
ever, as discussed above, one introduces several severe ap-
proximations when dealing with the d Hamiltonian only, and
the justification of these approximations �restriction to local
interactions, single-site DMFT, etc.� is questionable. This is
especially true in this compound due to the strong covalency
between iron and arsenic states.

IV. CONCLUSION AND PROSPECTS

In the first part of this work, we present an implementa-
tion of LDA+DMFT in the framework of the full-potential

linearized augmented plane-wave method. We formulate the
DMFT local impurity problem in the basis of Wannier orbit-
als, while the full lattice Green’s function is written in the
basis of Bloch eigenstates of the Kohn-Sham problem. In
order to construct the Wannier orbitals for a given correlated
shell we choose a set of local orbitals, which are then ex-
panded onto the KS eigenstates lying within a certain energy
window. In practice, we employ the radial solutions of the
Schrödinger equation for a given shell evaluated at the cor-
responding linearization energy as local orbitals. By or-
thonormalizing the obtained set of basis functions we con-
struct a set of true Wannier orbitals as well as projector
operator matrices relating the Bloch and Wannier basis sets.
We derive explicit formulas for the projected operator matri-
ces in a general FLAPW framework, which may include dif-
ferent types of augmented plane waves, lo and LO orbitals.
Our implementation is benchmarked using the test case of
SrVO3 for which we have obtained spectral and electronic
properties in very good agreement with results of previous
LDA+DMFT calculations.

In the second part of this paper we apply this LDA
+DMFT technique to LaFeAsO in order to assess the degree
of electronic correlations in this compound and clarify the
ongoing controversy about this issue in the literature. We
solved the DMFT quantum impurity problem using a
continuous-time quantum Monte Carlo approach. The Wan-
nier functions are constructed using an energy window com-
prising Fe 3d, As 4p, and O 2p. The resulting Wannier orbit-
als are rather well localized and isotropic. We take the
average values of U=2.69 eV and J=0.79 from constrained
RPA calculations, where the Wannier functions and screening
channels are consistent with our setting of the LDA
+DMFT scheme. We have checked the robustness of these
results by increasing the size of the energy window, which
resulted in a very similar physical picture.

Our LDA+DMFT results indicate that LaFeAsO is a
moderately correlated metal with an average value for the
mass renormalization of the Fe 3d bands about 1.6. This
value is in reasonable agreement with estimates from photo-
emission experiments.

We also consider a smaller energy window that includes
Fe-d states only. The resulting Wannier functions in this case
are quite extended leading to anisotropic and nonlocal Cou-
lomb interactions. We take different values for U and J in-
cluding the ones used in previous theoretical LDA+DMFT
approaches. We demonstrate that different physical pictures
ranging from a strongly correlated compound on the verge of
the metal-insulator transition to a moderately to weakly cor-
related one can emerge depending, in particular, on the
choice of the Hund’s rule coupling J as observed in Ref. 3.
However, there are conceptual difficulties when constructing
a local Hamiltonian from rather delocalized Wannier orbitals.
The interactions are very anisotropic and orbital dependent,
and nonlocal interactions could also become important.

In summary, we demonstrate that the discrepancies in the
results of several recent theoretical works employing the
LDA+DMFT approach stem from two main causes: �i� the
choice of parameters of the local Coulomb interaction on the
Fe 3d shell and �ii� the degree of localization of the Wannier
orbitals chosen to represent the Fe 3d states to which many-
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body terms are applied. Regarding the first point, the calcu-
lated interaction parameters employed in the present work
are significantly smaller than the values hypothesized in
Refs. 2 and 3. Regarding the second point, we provide strong
evidence that the DMFT approximation is more accurate and
more straightforward to implement when well-localized or-
bitals are constructed from a large energy window encom-
passing Fe-3d, As-4p, and O-2p. This issue has fundamental
implications for many-body calculations, such as DMFT, in a
realistic setting.
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APPENDIX A: BENCHMARK—SrVO3

For benchmarking purposes, we present in this appendix
LDA+DMFT results for an oxide that has become a classical
test compound for correlated electronic structure calcula-
tions, namely, the cubic perovskite SrVO3. As a paramag-
netic correlated metal with intermediate electron-electron in-
teractions, it is in a regime that is neither well described by
pure LDA calculations nor by approaches such as LDA+U
that are geared at ordered insulating materials. From the ex-
perimental side, SrVO3 has been characterized by different
techniques �angle-resolved and angle-integrated photoemis-
sion spectroscopy, optics, transport, thermodynamical mea-
surements, etc.�.17,23,49–57

LDA+DMFT calculations have been performed both for
an effective low-energy model that comprises the three de-
generate bands of mainly t2g character that are located
around the Fermi energy—taking advantage of the cubic
crystal field that singles out this group of bands—and for a
bigger energy window comprising also the oxygen p
states.13,17,19,22,23,25,26,55,56

In the low-energy effective t2g model a quasiparticle
renormalization of Z�0.6, compatible with experiments, is
obtained for U values around 4 eV. The remaining spectral
weight is shifted toward lower and upper Hubbard bands.
The lower Hubbard band located around −1.5 eV binding
energy has indeed been observed in photoemission; the high-
energy satellite of the t2g model is located around 2.5 eV.58

Concerning calculations taking into account also the
ligand states, it should be noted that possible LDA errors on
the separation of p and d states are not corrected by DMFT,
since only the d states are treated as correlated.

In the present work, we use SrVO3 as a benchmark for
our projector orbitals implementation of LDA+DMFT, with

results very similar to previous theoretical studies. We per-
formed two kinds of calculations: �i� we used as an energy
window the range from −1.35 to 1.90 eV which comprises
the t2g bands, and—at some k points—one or both of the eg
bands. This is closest in spirit to a t2g model within a Wan-
nier function formalism, though not exactly the same due to
the inclusion of some eg contribution. To recover a Wannier
prescription one would in fact have to choose a k-dependent
window, such as to include exactly three bands at each k
point, corresponding to the threefold degenerate manifold of
dominantly t2g bands. �ii� We used an energy window of
−8.10 to 1.90 eV spanning both the bands used in �i� and the
oxygen p dominated bands located between −8 and −2 eV.

Please note that, in order to be consistent with existing
literature, we use a different parametrization of the interac-
tion matrix compared to Sec. III. Here we define U to be the
onsite intraorbital Coulomb interaction, U−2J to be the in-
terorbital interaction for electrons with opposite spin, and
U−3J the interorbital interaction between electrons with
equal spin.

The results for the first case are shown in Fig. 7. The
upper panel, Fig. 7�a�, displays the total spectral function of
the thus defined model within LDA and LDA+DMFT. Our
results recover previously published results with a quasipar-
ticle renormalization of around Z=0.60 for values U
=4.0 eV and J=0.65 eV. The contribution of the eg bands
to the total DOS can easily be identified from the LDA
+DMFT spectra, where an additional hump between the qua-
siparticle peak and the upper Hubbard band appears.

Figure 7�b� shows the local orbitals used for the DMFT
calculations together with the corresponding impurity spec-
tral function A��� and the vanadium t2g partial DOS. The
latter one is obtained by projecting the lattice Green’s func-
tion to t2g character using the partial projectors to be intro-
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FIG. 7. �Color online� DOS for SrVO3, d-only model �small
energy window�. Top panel �a�: Total DOS of LDA �black� and
LDA+DMFT �red�. Bottom panel �b�: LDA local orbitals �black�,
impurity spectral function A��� �red�, and vanadium t2g partial DOS
�green�. Coulomb parameters for these calculations are given as
inset.
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duced in Appendix B. The main difference to panel �a� is the
absence of the additional eg character.

Finally, Fig. 8 shows the LDA+DMFT spectral function
compared to the LDA density of states, as calculated within
the larger energy defined in �ii� above. Since the Wannier
functions are more localized, as compared to case �i�, the
value for the Coulomb interactions has to be adjusted accord-
ingly and we chose a value of U=6.0 eV. As can be seen in
the figure, ligand states are barely modified by the correla-
tions and the results for the t2g-derived bands are very close
to what is seen in the effective low-energy model. The qua-
siparticle renormalization is Z=0.57 in good agreement with
the pure t2g treatment discussed before. The results of these
calculations correspond to what can be expected on the basis
of previously published work, and thus validate our imple-
mentation.

APPENDIX B: PROJECTORS FOR PARTIAL DOS

In order to calculate the partial density of states for a
given atomic site and particular orbital character �correlated
or not� we construct a different type of projectors, which we

call �̂i,�. The Wannier operators of Eq. �14� project onto a
given Wannier-type orbital. On the other hand, the new set

�̂i,�, as we will show, project onto a given orbital of certain
character for which we do not apply any orthonormalization
process as in the first. Unlike the Wannier projectors, the

�̂i,�’s can also project to other orbitals atoms apart from the
correlated set.

A given orbital character contributes in the eigenstates
through the solutions of the Schrödinger equation inside the
spheres ul

��r ,El1�Ym
l ��, ul

��r ,El1�Ym
l ��, and ul

��r ,El2�Ym
l ��

which do not form an orthonormalized basis set. It is more
convenient to construct these projectors if the wave function
is rewritten in an orthonormal basis set.

In a general form, inside a given sphere we can express
�k�

� �r� as

�k�
� �r� = �

lm

Alm� ul1 + �
lm

Blm� u̇l + �
lm

Clm� ul2, �B1�

where we simplify the notation by omitting the angular and
spin parts and defining Alm� , Blm� , and Clm� as combined coef-

ficients which are generally k dependent and contain the sum
over the plane waves and local orbitals. We also define ul1
�ul�r ,El1�, u̇l� u̇l�r ,El1�, and ul2�ul�r ,El2�.

We then rewrite �k�
� �r� as a function of a set of orthogonal

orbitals 
 j�r�, j=1,2 ,3 as follows:

�k�
� �r� = �

lm
�

j

�Alm� c1j
lm + Blm� c2j

lm + Clm� c3j
lm�
 j�r� . �B2�

The coefficients cij
lm are the matrix elements of the square

root of the corresponding overlap matrix

C = � 1 0 �ul1�ul2�
0 �u̇l�u̇l� �u̇l�ul2�

�ul2�ul1� �ul2�u̇l� �ul2�ul2�
�

1/2

. �B3�

In this way, rewriting Eq. �B2� as

�k�
� �r� = �

lm
�

j

c̃ j
lm
 j�r� , �B4�

the matrix elements of the projector to a given atom with lm
character finally read as

�m�j
i,� �k� = c̃j

lm. �B5�

The spectral function of a given atom i with orbital character
m is obtained as

Am
i,��k,�� = −

1

�
Im� �

���,j

�m�j
i,� �k�G���

� �k,�+����m�j
i,�� �k�� .

APPENDIX C: INFLUENCE OF THE ROTATIONAL
INVARIANCE OF HUND’S RULE COUPLING

IN MULTIORBITAL SYSTEMS

In our DMFT calculations using CTQMC as impurity
solver, we restricted the Hund’s rule interaction to Ising-type
interactions only, although there is no conceptual limitation
of the algorithm to this type of interactions. The reason for
doing this is of purely technical nature, since in this case one
can diagonalize the local problem very efficiently, and fur-
thermore, it enables us to use the so-called segment-picture
update scheme,59 which increases the efficiency of the
CTQMC method a lot.

One may now ask how results change if the fully
rotational-invariant Hund’s rule exchange is taken into ac-
count. For this purpose, we study a multiband model Hamil-
tonian, assuming degenerate bands, no interband hybridiza-
tions, and a semicircular density of states. Applying the self-
energy functional theory �SFT�,60 we can study the
quasiparticle renormalization Z as function of interactions U
and J. In this study, we choose the convention of setting the
intraorbital Coulomb repulsion to U and the interorbital to
U�=U−2J, and give all energies in units of the single-
particle hopping amplitude t, i.e., the bandwidth of the DOS
is W=4t.

In addition to the density-density interactions, we con-
sider also the additional spin-flip and pair-hopping terms of
the local Hamiltonian,
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FIG. 8. �Color online� Total DOS for SrVO3, dp Hamiltonian
�vanadium t2g and oxygen p�.
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Hsf = −
J

2 �
mm�

�cm↑
† cm↓cm�↓

† cm�↑ + H.c.� , �C1�

Hph = −
J

2 �
mm�

�cm↑
† cm↓

† cm�↑cm�↓ + H.c.� . �C2�

We do calculations at T=0 and choose the reference system
for the SFT framework to consist of one bath degree of free-
dom for each correlated orbital. Hence, going up to M =5
orbitals, we have to diagonalize a local problem consisting of
at most ten orbitals.

The upper panel of Fig. 9 shows Z for a three-orbital
model at half-filling, n=3, for J=0.1U. A tremendous reduc-
tion in the critical Uc of the metal-to-insulator transition
�MIT� is observed, already for Ising-type interactions. This is
a well known fact that for multiorbital systems at or close to
half-filling, the effect of J should be strongest.61–63 The in-
clusion of spin-flip and pair-hopping terms gives rise to two
effects. �i� For moderate correlations, Z�0.6, these terms
lead to a slight reduction in Z, but �ii� the critical U for the
MIT is shifted upward. This qualitatively holds also away
from half-filling, which can be seen in the lower panel of
Fig. 9, where we plotted Z for n=2. Although the transition
is not of first order anymore, one can again identify two
regimes. For moderate correlations, Z decreases, whereas
close to the transition the spin-flip and pair-hopping terms
increase the renormalization Z and the critical Uc is pushed
to higher values. This is consistent with a numerical renor-
malization group study for the two-orbital Hubbard model.62

We also considered the case relevant for pnictide materi-
als, i.e., M =5, n=6, and Z around 0.5. This regime could be
realized by setting �i� U=3.5t and J=0.35t, which shows a
reduction in Z from 0.52 to 0.47 due to spin-flip and pair
hopping, or �ii� U=2t, J=0.4t, giving a reduction from 0.61
to 0.57. In conclusion, this analysis shows that the picture of
a moderately correlated metal as argued in Sec. III holds also
when a fully rotational-invariant Hund’s exchange is consid-
ered. For systems close to a MIT, this is no longer true and
the spin-flip and pair-hopping terms become crucial.
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